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Reduced equation of motion for a multimode system coupled to multiple heat baths is constructed by extending
the quantum Fokker-Planck equation with low-temperature correction terms (J. Phys. Soc. Jpn.2005, 74,
3131). Unlike such common approaches used to describe intramolecular multimode vibration as a Bloch-
Redfield theory and a stochastic theory, the present formalism is defined by the molecular coordinates. To
explore the correlation among different modes through baths, we consider two cases of system-bath couplings.
One is a correlated case in which two modes are coupled to a single bath, and the other is an uncorrelated
case in which each mode is coupled to a different bath. We further classify the correlated case into two cases,
the plus- and minus-correlated cases, according to distinct correlation manners. For these, one-dimensional
and two-dimensional infrared (2D-IR) spectra are calculated numerically by solving the equation of motion.
It is demonstrated that 2D-IR spectroscopy has the ability to analyze the correlation of fluctuation-dissipation
processes among different modes.

1. Introduction

Vibrational spectroscopy has provided important insight into
the structural and dynamic properties of chemical and biophysi-
cal systems in condensed phases. However, most of the
conventional one-dimensional (1D) vibrational spectroscopies,
which project the nuclear motion onto a single frequency or
time axis, cannot extract the wealth of information unambigu-
ously. This is because we cannot separate a variety of dynamic
contributions to the vibrational line shapes on the 1D axis. To
disentangle the 1D line shapes, one needs to explore multidi-
mensional observables, which project the microscopic dynamics
onto more than two axes.

Over the past decade, extensive theoretical, computational,
and experimental efforts have been made for multidimensional
vibrational spectroscopy1-8 to have a variety of information on
molecules in condensed phases. Consequently, the multidimen-
sional spectroscopy has been proven to be valuable and versatile
tools for diverse topics in condensed-phase chemical dynamics.
Especially, objects under study in two-dimensional infrared (2D-
IR) spectroscopy have definitely spread very wide: structures
and dynamics of peptides,9-15 conformational changes in pro-
tein,16-18 water dynamics,19 hydrogen-bond dynamics,20-25 sol-
ute-solvent interactions,26,27quantum tunneling processes,28-30

and fast chemical exchange in molecular complexes.31-33

Multidimensional vibrational spectroscopy is the optical
counterpart of multidimensional NMR such as COSY and
NOESY, which are powerful tools for organic structural analysis
and structural biology.34 In 2D-NMR and 2D-IR experiments,
the data sets are represented in the 2D frequency space. The
2D frequency space allows us to separate the dynamic contribu-
tions from various Liouville pathways. We can, therefore,
identify coupled modes visually from the off-diagonal peaks.35-40

Furthermore, because the 2D line shapes are very sensitive to

a time-evolution of the environment, we can estimate the
characteristic timescales of environment.41

On another front, the vibrational dynamics in 2D-IR spec-
troscopy are very complicated compared to the spin dynamics
in 2D-NMR. Unlike spin dynamics, vibrational dynamics cannot
be generally described within the conventional frameworks of
quantum master equations. The well-known Redfield theory42

cannot always be applied to such a low-temperature system as
intramolecular vibration, where quantum effects play a major
role. The physically valid density operators should have positive
(or non-negative) eigenvalues because the eigenvalues cor-
respond to state probabilities. In a low-temperature case,
however, a time evolution described by the Redfield equation
does not necessarily conserve the positivity property. This
difficulty is called the positiVity problem. As a way to ensure
the property, one performs the secular approximation, which
involves averaging over the rapidly oscillating terms in the
equation and is known as the rotating-wave approximation.
However, the approximation has no guarantee of maintaining
the original dynamic properties.43 In addition, the equation
employs the perturbative manner for the system-bath interaction
and the Markov approximation. Hence, it cannot handle strong
system-bath couplings and memory effects.

As was shown by Tanimura et al., such systems can be treated
by utilizing a tridiagonal hierarchy of equations.44-50 For a low-
temperature case, the structure of hierarchy becomes very
complicated because of the quantum nature of the heat bath
characterized by Matsubara frequencies.51 Then, Ishizaki and
Tanimura clarified the structure of hierarchy and found a
rigorous and simple way to terminate the hierarchy, reducing
the quantum Fokker-Planck equation with low-temperature
correction terms (QFP-LTC).52 Along the line of hierarchy
formalism, different formulations have been tested,53-56 but
practical problems demonstrated so far, such as vibrational
dephasing problems of 2D-IR spectroscopy, were only from the
QFP-LTC approach.57 Here, we extend previous analysis of a
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single-mode system to multimode systems coupled to multiple
baths by further extending the QFP-LTC formalism. Special
attention will be paid to explore the correlation of fluctuation-
dissipation processes among different modes by means of the
2D-IR spectroscopy. This work is motivated by the experiment
performed by Demirdo¨ven, Khalil, and Tokmakoff.6,58 They
reported on the 2D-IR experiment of the correlation effects in
the solvation dynamics of coupled vibrational modes. As a
model system to probe the correlated dynamics, they studied
the coupled symmetric and asymmetric carbonyl [-CtO ]
stretching modes of dicarbonyl acetylacetonato rhodium(I) [ Rh-
(CO)2C5H7O2] dissolved in chloroform. Their analyses were
based on a quasi-static energy-level model assuming a complete
separation of the extremely fast (homogeneous limit) and
extremely slow (inhomogeneous limit) components. In this
paper, we employ more general model expressed in molecular
coordinates and apply rigorous dynamical theory for arbitrary
time-scale components of the system and baths. Although 2D-
IR experiments are carried out at room temperature, we need
to include the low-temperature correction terms. This is because,
in the intramolecular vibrational motion under discussion, the
temperature is much lower than the vibrational excitation energy,
where quantum effects play a dominant role.

This paper is organized as follows: In Section 2, we introduce
the quantum dissipative equation, which can describe the
dynamics of the multimode system coupled to multiple heat
baths. In Section 3, numerical results for nonlinear optical
signals including 2D-IR spectra are presented and discussed.
Section 4 is devoted to concluding remarks.

2. Multimode System Coupled to Multiple Baths:
Reduced Equation of Motion

We consider a multimode system described by dimensionless
coordinates,q ≡ (q1, q2, . . .), and their conjugate momenta,p
≡ (p1, p2, . . .). The Hamiltonian is given by

whereU(q) is the molecular potential for the vibrational motion
and is separated into harmonic parts and an anharmonic part as
follows:

For the potential, we define the characteristic frequency asωc

≡ maxs(ωs).
To model an intramolecular vibrational motion in a condensed

phase, we consider the system coupled to multiple heat baths
each of which consists of harmonic oscillators. The total
Hamiltonian is expressed as

Here, the bath and system-bath interaction Hamiltonians are
expressed as

where the parametersêRj, πRj, andωRj are the mass-weighted
coordinate, conjugate momentum, and frequency of thejth
oscillator in theRth bath, respectively. In eq 2.4, the interaction
between the multimode system and theRth bath is expressed
as Hint

(R)(q, {êRj}) ) -WR(q) ∑j cRj êRj, where WR(q) is a
function whose dimension is the same asq. We have included
the counter term∆UR(q) ≡ WR(q)2 ∑jcR j

2 /2ωR j
2 to maintain the

translational symmetry of the Hamiltonian forU(q) ) 0.49

The key quantity of interest is the reduced density operator,
F̂(t) ≡ Trbaths{F̂tot(t)}, that is, the partial trace of the total density
operator over the optically inactive bath degrees of freedom
{êR j} . Here, we suppose that the total system at the initial
time t ) ti is in the uncorrelated product stateof the form
F̂tot(ti) ∝ F̂(ti) ∏R exp(-âRĤbath

(R) ). Then, the reduced density
operator evolves in times as follows

where the matrix element of the Liouville space propagator
Ĝ(t; ti) can be expressed in the path integral form as

Here,Seff[q] is the action corresponding to the renormalized
system Hamiltonian,H eff ≡ H + ∑R∆UR(q), andFR[q, q′] is
the Feynman-Vernon influence functional59 for the Rth bath
whose character is specified by the spectral density,IR(ω) ≡
π∑ j[cRj

2 /2ωRj]δ(ω - ωRj). In this paper, we take an Ohmic
spectral density with the Lorentz-Drude regularization:

The parametersγR and úR are related to the correlation time
and the strength of noise by theRth bath, respectively. This
can be seen from the symmetrized correlation function of the
Rth bath collective coordinateX̂R(t) ≡ ∑j cRj x̂Rj(t):

with

where { , } stands for the anticommutator, and〈‚‚‚〉B is the
thermal average with respect to the bath degrees of freedom.
Equation 2.9 involving the bosonic Matsubara frequencyνR k

) 2πk/âRp (k g 1) represents a quantum effect of theRth bath
noise. In the high-temperature regionâRpγR/2 , 1, the
contribution of ΛR(t) to eq 2.8 becomes vanishingly small.
Therefore, eq 2.8 indicates that the bath oscillators disturb the
system with the colored noise, which has an exponential time
correlation. However, just because the contribution of eq 2.9 is
vanishingly small does not mean that we can disregard it. The
disregard of this term at low temperatures characterized by
âRpωc/2 J 1 destroys the quantum interference between the
system and the bath and then gives rise to such an unphysical
result asthe positiVity problem, where the populations of the
excited states become negative. For the wholesome description

Ĥ ) ∑
s

pωs

2
p̂s

2 + U(q̂) (2.1)

U(q) ) ∑
s

pωs

2
qs

2 + Uanh(q) (2.2)

Ĥtot ) Ĥ + ∑
R

[Ĥbath
(R) + Ĥint

(R)] (2.3)

Ĥbath
(R) + Ĥint

(R) ) ∑
j [π̂Rj

2

2
+

ωRj
2

2 (ê̂Rj -
cRj

ωRj
2

WR(q̂))2] (2.4)

F̂(t) ) Ĝ (t; ti)F̂(ti) (2.5)

G (q, q′, t; qi, q′i , ti) )

∫(qi,ti)

(q,t)
Dq∫(q′i ,ti)

(q′,t)
Dq′eiSeff[q]/ p [∏R

FR[q, q′]] e-iSeff[q′]/p (2.6)

IR(ω) )
púR

ωc
ω

γR
2

ω2 + γR
2

(2.7)

1
2

〈{X̂R(t), X̂R(0)}〉B ∝
úR

âR
γRe-γRt + ΛR(t) (2.8)

ΛR(t) ≡ -
úR

âR
∑
k)1

∞ 2γR
2

νRk
2 - γR

2
(γRe-γRt - νRke

-νRkt) (2.9)
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of quantum dissipative dynamics, it is indispensable to construct
the equations involving the effects of eq 2.9. In a similar manner
described in refs 52 and 57, we can construct the hierarchy of
equations for a system coupled to multiple heat baths. Here,
we can obtain the dynamic equation for the reduced density
operator eq 2.5 as follows:

where we introduce the set of hierarchy elementsJ ≡ {j1, j2, .
. .} with the KR + 1-dimensional vector forRth bath defined
by KR + 1 non-negative integers,jR ≡ (jR0, jR1, ..., jRKR). We
definedνR0 ≡ γR and introduced the notationJRk( ) {j1, ...,
jRk(, ...} with jRk( ≡ (jR0, ..., jRk ( 1, ....,jRKR). The value ofKR
is determined so as to satisfy52

Note that onlyF̂(J ) 0; t) ) F̂(t) describes the dynamics to be
measured, whereas the other elementsF̂(J * 0; t) are the
auxiliary operators being introduced in order to take into account
a correlation between the system and the bath as the memory
effect and the quantum interference. In eq 2.10,iL̂ eff ≡ (i/p)
×[Ĥ + ∑R ∆UR(q̂)]× is the quantal Liouvillian of the system,
where the counter term∆UR(q̂) is expressed as

Φ̂R, Θ̂Rk, and¥̂R are theRth bath-induced relaxation operators
defined by and

with zR ≡ âRpγR/2. In the above, we have introduced the hyper-
operator notations

for any operatorÔ and operand operatorf̂.
The multidimensional hierarchy equations, eq 2.10, continue

to infinity, which is not easy to solve numerically. To terminate
eq 2.10 at the finite stages, we introduce the following
terminator52,57

which is valid for the integersjR0, jR1, ..., jRK satisfying

In practice, as demonstrated in ref 52, we may use the lower
values ofKR andNR, which do not satisfy eqs 2.11 and 2.16,
respectively. Equation 2.10 with eq 2.15 has applicability to a
low-temperature system strongly coupled to the heat bath
without employing the rotating-wave approximation for the
system-bath interaction; eq 2.10 with eq 2.15 is free from the
positivity problem. This advantage deserves explicit emphasis.

3. Dynamics of the Multimode System Probed by 2D-IR
Spectra

In this section, we present the vibrational spectra calculated
for an optically active two-mode system

under various system-bath interactions. Here, we consider the
nonlinearly coupled Morse oscillators system whose potential
is given by

where

We describe the system in terms of the energy eigenstates of
each vibrational mode in the case ofg112 ) g122 ) 0, {|V1, V2〉}
≡ {|V1〉 X |V2〉}, where|Vs〉 is the eigenstate belonging to the
Vth eigenvaluesEs,V of the sth mode. The two-mode system is
specified by the parameters

andωc ) max(ω1, ω2) ) ω1. In addition, we assume the dipole
moment to be the following form

and we setµ1 ) µ2 ) 1 to calculate the optical signals.
We begin with the two-mode system coupled to a single heat

bath: the case of onlyR ) 1. For simplicity of the later
discussion, the system-bath interactionHint

(1)(q,{ê1j}) in eq 2.4
is assumed to be of the form

This interaction induces not only the dissipation but also the
curvature fluctuation of the potential surfaceU(q1, q2) in
accordance with the time evolution of the bath coordinates
{ê1j}.46-49 Furthermore, we consider the two sets of the value

∂

∂t
F̂(J; t) ) - i L̂ effF̂(J; t) - ∑

R [∑
k)0

KR

jRkνRk + ¥̂R] F̂(J; t)

- ∑
R

∑
k)0

KR

Φ̂RF̂(JRk+; t) - ∑
R

∑
k)0

KR

jRkνRkΘ̂RkF̂(JRk-; t) (2.10)

νRK . ωc (2.11)

∆UR(q̂) ) p
úRγR

2ωc
WR(q̂)2 (2.12)

Φ̂R ≡ iWR(q̂)× (2.13a)

Θ̂R0 ≡ i
úR

âRpωc
[zR cotzR WR(q̂)× - izRWR(q̂)°]

(2.13b)

Θ̂Rk ≡ i
úR

âRpωc

2zR
2

π2k2 - zR
2

WR(q̂)× (k g 1) (2.13c)

¥̂R ≡ ∑
k)1

KR

Φ̂RΘ̂Rk +
úR

âRpωc

(1 - zR cotzR)[WR(q̂)×]2

(2.13d)

Ô× f̂ ≡ Ô f̂ - f̂ Ô, Ô° f̂ ≡ Ô f̂ + f̂ Ô (2.14)

∂

∂t
F̂(J; t) = - i L̂ effF̂(J; t) - ∑

R
¥̂RF̂(J; t) (2.15)

NR ≡ ∑
k)0

KR

jk .
ωc

max(γR, νR1)
(2.16)

Ĥ )
pω1

2
p̂1

2 +
pω2

2
p̂2

2 + U(q̂1, q̂2) (3.1)

U(q1, q2) ) ∑
s)1

2

Us(qs) + p(g112

2
q1

2q2 +
g122

2
q1q2

2) (3.2)

Us(qs) )
pωs

2as
2
[1 - exp(- asqs)]

2 (3.3)

ω1 ) 1565.65 cm-1, ω2 ) 1666.66 cm-1 (3.4)

a1 ) a2 ) 0.1 (3.5)

g112 ) g122 ) -40 cm-1 (3.6)

µ(q̂) ) µ1q1 + µ2q2 (3.7)

W1(q) ∑
j

c1jê1j ) (V11

2
q1

2 +
V22

2
q2

2) ∑
j

c1jê1j (3.8)
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for Vss: (a) (V11, V22) ) (+1, +1) and (b) (V11, V22) ) (+1,
-1). As we show in the schematic illustration in Figure 1, the
bath modulates the system in distinct manner. In case (a), the
bath modulates the curvature along theq1 axis and that along
theq2 axis in the same direction, whereas in case (b), the bath
modulates the curvatures along two axes in opposite directions.
We call the fluctuations in (a) and (b)+ correlated fluctuation
and- correlated fluctuation, respectively. For both (a) and (b),
the system-bath coupling parameters are set to beγ1 ) 0.004ωc

andú1 ) 0.4ωc. The temperature of the heat bath isT ) 300
K. From these parameters, the amplitude of the frequency
fluctuation in thesth mode (s ) 1, 2) can be estimated at∆s )
0.0075ωc. (See eq 3.18 in ref 57.) Then, we have∆s /γ1 ) 1.87.
This value is in the so-called spectral diffusion regime with
moderate inhomogeneity. Note that the extreme cases,∆s /γ1

, 1 and∆s /γ1 . 1 are called the homogeneous and inhomo-
geneous limit, respectively.

As the third case (c), we consider the two-mode system where
thesth mode (s ) 1, 2) is coupled to thesth heat bath. Thesth
system-bath interaction is assumed to be in the form

Because the baths do not interact with each other, the fluctua-
tions along the two axes in the potential surface do not correlate.
Therefore, we call this caseuncorrelated fluctuation. For this
case, the system-bath parameters are set to beγ1 ) γ2 )
0.004ωc and ú1 ) ú2 ) 0.4ωc. The temperatures of the two
baths are assumed to be the same as that in the single bath case,
T ) 300 K.

To obtain signals, we numerically integrate eq 2.10 with eq
2.15 by using the fourth-order Runge-Kutta method. The time
step for the finite difference expression for∂F̂(J, t)/∂t is δt )
(1/ωc) × 0.01. The system is represented by the lowest four
energy eigenstates of the respective vibrational modes in order
to carry out the calculations. We choose the hierarchy and the
number of the Matsubara frequenciesNR ) 7-15 andKR )
1-4, respectively. As was mentioned in Section 1, by the virtue
of the low-temperature correction terms, the present equations
of motion maintain the positivity property, where most of the
reduced equation of motion could not be certified. The accuracy
of the numerical calculations is checked by changing the number
of the energy eigenstates and the values ofδt, NR, andKR.

For resonant third-order nonlinear spectroscopic experiments,
we apply the three short pulses, tuned to the molecular vibration
of interest, with wave vectorska, kb, andkc at time t ) ta, tb,
andtc, respectively. These pulses generate the four-wave-mixing
signal field in the phase-matched directions. In this paper, we
consider the signals generated in the phase-matched direction
kS ) kc + kb - ka. The signal detected at timet is described by
a nonlinear response function, which depends on three time
intervals referred to as the evolution periodτ1, the waiting period
τ2, and the detection periodτ3. For a time orderingtγ gtâ gtR
({R, â, γ} ) {a, b, c}), the three intervals are defined byτ1 ≡
tâ - tR, τ2 ≡ tγ - tâ, andτ3 ≡ t - tγ . By varying the ordering
of the three input pulses, we can detect the signals corresponding
to various Liouville pathways in thekS direction. In what
follows, the response function for an orderingtγ gtâ gtR is
denoted byRγ â,R(τ3, τ2, τ1). Then, we have57

and

whereĜ(τ) is the retarded propagator of the total system in the
Liouville space. The operatorµ̂f is defined by

for the dipole moment of the systemµ(q), and the operatorµ̂r

is the Hermitian conjugate ofµ̂f. Note that the directions of
the subscript arrows in eq 3.10 correspond to those of the arrows
in double-sided Feynman diagrams. The response functions, eqs
3.10a and 3.10b, describe the rephasing and nonrephasing
experiments, respectively. Whenτ2 ) 0, however, the last two
pulses are coincident in the matter. Then, the two response
functions stemming from the different time orderings,Rcb,aand
Rbc,a () Rcb,a), are indistinguishable for the rephasing experi-
ment. By the same token, both of the two response functions,
Rca,b andRac,b, contribute to the nonrephasing signal whenτ2

Figure 1. Schematic illustration of correlated fluctuations of the
potential energy surface of the two-mode system. The top panel shows
the contour lines of the unperturbed surface as the function of two
molecular coordinates. In panel a, the red lines represent the perturbed
contour lines by the+ correlated fluctuation. In panel b, the blue lines
represent the contour lines modulated by the- correlated fluctuation.
In a and b, the black dashed lines are the unperturbed contours, and
the arrows denote that the potential energy surface fluctuates around
the unperturbed state. The+ correlated and- correlated fluctuations
deform the potential surface in distinct manners.

Ws(q) ∑
j

csjêsj )
Vss

2
qs

2 ∑
j

csjêsj (3.9)

Rcb,a(τ3, τ2, τ1) )

Tr{µ(q̂) Ĝ(τ3)
i
p

µ̂f
× Ĝ(τ2)

i
p

µ̂f
× Ĝ(τ1)

i
p

µ̂r
× F̂tot

eq} (3.10a)

Rca,b(τ3, τ2, τ1) )

Tr{µ(q̂) Ĝ(τ3)
i
p

µ̂f
× Ĝ(τ2)

i
p

µ̂r
× Ĝ(τ1)

i
p

µ̂f
× F̂tot

eq} (3.10b)

Rac,b(τ3, τ2, τ1) )

Tr{µ(q̂) Ĝ(τ3)
i
p

µ̂r
× Ĝ(τ2)

i
p

µ̂f
× Ĝ(τ1)

i
p

µ̂f
× F̂tot

eq} (3.10c)

µ̂f ≡ ∑
V,V′

|V + 1, V′〉〈V + 1, V′|µ(q̂)|V, V′〉〈V, V′| (3.11)
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) 0. Therefore, we redefine the rephasing and nonrephasing
response functions as

and

respectively, whereH(t) is the Heaviside step function.
Here, we describe the way to calculate the optical response

function, eq 3.10a, from the equation of motion approach.49,57

At the setout, we have to generate the true equilibrium state of
the reduced density matrix. The equilibrium state should include
the correlation effect between the system and the bath, which
arises from the system-bath interaction. To have the correlated
equilibrium state, we temporally set an initial condition,F̂(J )
0, ti) ) exp(-âĤ)/Tr exp(-âĤ) andF̂(J * 0, ti) ) 0. It should
be noted that this temporal initial condition is not the true
equilibrium state because it neglects the correlation effect. We
can generate the initial equilibrium state by integrating the
equation of motion, eqs 2.10 and 2.15, with the temporal
condition, until all hierarchical elements attain steady-state
values. (See also Appendix A of ref 29.) This time instant is
set to bet ) 0. If we utilize the theories suffering from the
positiVity problem mentioned in Section 2, then we cannot obtain
the physically meaningful correlated equilibrium state and hence
cannot carry forward the calculations anymore. To ignore this
fact is to miss the significance of the positiVity property.Next,
the generated equilibrium state is modified by the first laser
pulse via the dipole operator as (i/p)µ̂r

× . This perturbed density
operator is propagated for theτ1 period by the operatorĜ(τ1),
where the time evolution follows the equation of motion, eqs
2.10 and 2.15. The subsequent events can be interpreted
correspondingly. Finally, the expectation value of the dipole
momentµ(q̂) is calculated with the density operator perturbed
by three laser pulses. Equations 3.10b and 3.10c can be
calculated in the same way.

By the double Fourier transform of eqs 3.12 and 3.13 with
respect toτ1 and τ3, we can obtain a 2D rephasing spectrum

and a 2D nonrephasing spectrum

respectively. The individual 2D rephasing and nonrephasing
spectra show distorted line shapes (the so-calledphase-twisted
lines) because the double Fourier transform leads to a combina-
tion of absorptive and dispersive features.34 By adding the 2D
rephasing and nonrephasing spectra in equal weights, however,
we can cancel out the contribution from the dispersive part to
obtain the 2D correlation spectrum with only the absorptive line
shape:60

Figure 2 presents linear absorption spectra (left panels) and
1D plots of the rephasing spectra (right panels) defined by

Panels (a), (b), and (c) are for the+ correlated,- correlated,
and uncorrelated cases, respectively. The 1D spectra for each
case have fairly similar characteristics. In the rephasing spectra,
the negative-going peaks arise from the 0-1 transition, whereas
the positive-going peaks arise from the 1-2 transition. However,
one cannot extract any further information from the 1D spectra;
it is impossible to distinguish the different mechanisms of the
potential surface fluctuation.

The 2D-IR rephasing, nonrephasing, and correlation spectra
with t2 ) 0 are given in Figure 3. Panels (a) and (b) are for the
+ correlated and- correlated fluctuation cases, respectively.
In spectra (a-iii), the off-diagonal peaks are titled parallel to
the diagonal peaks. By comparing the rephasing spectrum (a-i)
with the nonrephasing one (a-ii), we can see the peaks arise
mainly from the rephasing pathways. In spectra (b-iii), in
contrast, the off-diagonal peaks are titled perpendicular to the
diagonal peaks. The peaks come mainly from the nonrephasing
pathways. The difference between the off-diagonal peak am-
plitudes in panel (a-i) and those in panel (b-ii) are due to the
imbalance contributions among the number of the Liouville
pathways for the rephasing and nonrephasing processes. (See
Figure 4.) These results are similar to the results by Khalil,
Demirdöven, and Tokmakoff.6 Their analysis was based on a
quasi-static energy-level model employing the complete separa-
tion of the extremely fast (homogeneous limit:∆s/γ1 , 1) and
extremely slow (inhomogeneous limit:∆s/γ1 . 1) components
for the system-bath interactions. However, we employed a
more-general model described by molecular vibrational coor-
dinates and apply the dynamical theory for the spectral diffusion
regime with the moderate inhomogeneity,∆s/γ1 ) 1.87. Thus,
the degree of elongation of the 2D lineshapes in Figure 3 along
the diagonal axis is less than that in Figure 15 in ref 6. Panel
(c) is for the uncorrelated case. In this case, the fluctuations of

RR(τ3, τ2, τ1) ≡ H(τ2) Rcb,a(τ3, τ2, τ1) +
H(-τ2) Rbc,a(τ3, -τ2, τ1) (3.12)

RNR(τ3, τ2, τ1) ≡ H(τ2) Rca,b(τ3, τ2, τ1) +
H(-τ2) Rac,b(τ3, -τ2, τ1) (3.13)

SR(Ω3, Ω1; τ2) ) Im ∫0

∞
dτ3 ∫0

∞
dτ1e

iΩ3r3+iΩ1τ1 RR(τ3, τ2, τ1)

(3.14)

SNR(Ω3, Ω1; τ2) ) Im ∫0

∞
dτ3 ∫0

∞
dτ1e

iΩ3r3+iΩ1τ1 RNR(τ3, τ2, τ1)

(3.15)

SC(Ω3, Ω1; τ2) ≡ SR(Ω3, - Ω1; τ2) + SNR(Ω3, Ω1; τ2)
(3.16)

Figure 2. Comparison of the 1D spectra: (a)+ correlated fluctuation,
(b) - correlated fluctuation, and (c) uncorrelated fluctuation. The left
panels show the linear absorption spectra, whereas the right panels the
1D plot of the rephasing spectra, eq 3.17. In the rephasing spectra, the
negative-going peaks arise from the 0-1 transition, whereas the
positive-going peaks arise from the 1-2 transition.

S̃R
(3) (Ω3) ) Im ∫0

∞
dτ3e

i Ω3τ3 RR(τ3, τ2 ) 0, τ1 ) 0) (3.17)
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frequenciesω1 andω2 are independent. Therefore, the ampli-
tudes of the off-diagonal peaks in the rephasing spectrum (c-i)
is suppressed relative to those in spectrum (a-i) and is enhanced
relative to those in (b-i). By the same token, the off-diagonal
amplitudes in the nonrephasing spectra (c-ii) are weaker than
those in (b-ii) and is stronger than those in (a-i). However,
because the number of the Liouville pathways contributing to
the spectrum (c-i) is more than that for (c-ii); the gradient of
the off-diagonal peaks in the correlation spectrum (c-iii) is
slightly upward. Thus, it is difficult to distinguish clearly the
difference between the+ correlation and the uncorrelation from
only the gradients of the off-diagonal peaks in the correlation
spectra. We need to analyze the amplitudes of the peaks in the
rephasing and nonrephasing spectra.

4. Concluding Remarks

In this paper, we extended the quantum Fokker-Planck
equation with low-temperature correction terms to the multimode
system coupled to the multiple heat baths. Previous studies on

the multimode systems, which utilized the Redfield equation
and the stochastic theories, started from the energy-level
representation. In contrast, our formalism is based on a
molecular coordinate representation although we used energy
eigenstates to carry out numerical calculations. By means of
the present formalism, 1D- and 2D-IR spectra for the two-mode
systems were calculated for various conditions. We showed that,
in contrast to the 1D spectra, the 2D spectra were very sensitive
to the distinct manners of the potential surface modulation. We
discussed correlation effects of modulation between the two
modes. For this purpose, we consider two cases of system-
bath couplings. One is a correlated case in which two modes
are coupled to a single bath, and the other is an uncorrelated
case in which each mode is coupled to a respective baths. We
further classify the correlated case into two cases, the+cor-
relation and- correlation cases. In the+ correlation case, the
bath modulates the curvatures of the two modes in the same
direction. Alternatively, in the- correlation case, the bath
modulates the curvatures in opposite directions. No information

Figure 3. Comparison of 2D-IR spectra: (a)+ correlated fluctuation, (b)- correlated fluctuation, and (c) uncorrelated fluctuation. The panels
from the left to right show (i) the rephasing spectra, eq 3.14; (ii) the nonrephasing spectra, eq 3.15; and (iii) the correlation spectra, eq 3.16,
respectively. The normalization of 2D plots is such that the peak amplitude at (Ω1, Ω3) ) (1550, 1550) cm-1 in spectrum a-iii is unity. Twenty
equally spaced contour levels from-0.5 to 0.5 are drawn for each plot.
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on the correlated and uncorrelated effects could not be extracted
from the 1D spectra. However, the difference between the
distinct correlation and uncorrelation manners were clearly
observed by the 2D spectra.

In this paper, we discussed the effects of the bath modulation
mainly on the vibrational phase relaxation processes. However,
our approach can also be applied to the vibrational energy
transfer processes. As is well known, the intramolecular
vibrational energy redistribution processes are closely related
to the thermal chemical reaction processes. Monitoring the
reaction processes on multidimensional potential surfaces by
means of the 2D-IR spectroscopy is interesting and challenging.
In addition, our formalism is not limited to the vibrational
motions. By considering two-level systems instead of anhar-
monic oscillators, we can deal with a variety of systems such
as coupled multichromophore systems. For those systems, 2D
electronic spectra provide detailed information on the electronic
couplings among chromophores and on the excited energy and
coherence transfer.61-65 We leave them for future studies.
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