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Reduced equation of motion for a multimode system coupled to multiple heat baths is constructed by extending
the quantum FokkerPlanck equation with low-temperature correction terchsRhys. Soc. JprR005 74,

3131). Unlike such common approaches used to describe intramolecular multimode vibration as-a Bloch
Redfield theory and a stochastic theory, the present formalism is defined by the molecular coordinates. To
explore the correlation among different modes through baths, we consider two cases of §gtecouplings.

One is a correlated case in which two modes are coupled to a single bath, and the other is an uncorrelated
case in which each mode is coupled to a different bath. We further classify the correlated case into two cases,
the plus- and minus-correlated cases, according to distinct correlation manners. For these, one-dimensional
and two-dimensional infrared (2D-IR) spectra are calculated numerically by solving the equation of motion.

It is demonstrated that 2D-IR spectroscopy has the ability to analyze the correlation of fluctihigigipation
processes among different modes.

1. Introduction a time-evolution of the environment, we can estimate the
characteristic timescales of environméht.

On another front, the vibrational dynamics in 2D-IR spec-
troscopy are very complicated compared to the spin dynamics

in 2D-NMR. Unlike spin dynamics, vibrational dynamics cannot
be generally described within the conventional frameworks of

Vibrational spectroscopy has provided important insight into
the structural and dynamic properties of chemical and biophysi-
cal systems in condensed phases. However, most of th
conventional one-dimensional (1D) vibrational spectroscopies,

which project the nuclear motion onto a single frequency or . )
brol d q y guantum master equations. The well-known Redfield th&ory

time axis, cannot extract the wealth of information unambigu- | b lied hal
ously. This is because we cannot separate a variety of dynamicc@nnot always be applied to such a low-temperature system as

contributions to the vibrational line shapes on the 1D axis. To Intramolecular vibration, where quantum effects play a major
disentangle the 1D line shapes, one needs to explore multigi-role. The phy3|_cally v_alld density operators shoulq have positive
mensional observables, which project the microscopic dynamics (O Non-negative) eigenvalues because the eigenvalues cor-
onto more than two axes. respond to state probabilities. In a low-temperature case,
I,however, a time evolution described by the Redfield equation

Over the past decade, extensive theoretical, computationa ; . g
does not necessarily conserve the positivity property. This

and experimental efforts have been made for multidimensional ~ -~ . L

vibrational spectroscopy® to have a variety of information on difficulty is called the positiity problem As a way to ensure.
molecules in condensed phases. Consequently, the multidimen-'.[he property, one performs the gecular ?ppTOX'ma“O”a which
sional spectroscopy has been proven to be valuable and versatilénVOIV.es averaging over the rapidly .oscnlatlng terms. n t.he
tools for diverse topics in condensed-phase chemical dynamics.equa’[Ion and is knoyvn as the rotating-wave approxllma.tlc.)n.
Especially, objects under study in two-dimensional infrared (2D- HOWeVer, the approximation has no guarantee of maintaining

IR) spectroscopy have definitely spread very wide: structures the original dynamic_ propertieS. In addition, th? equaFion
and dynamics of peptidés25 conformational changes in pro- employs the perturbative manner for the systdrath interaction

tein 16-18 water dynamicd? hydrogen-bond dynamic®; 25 sol- and the Markov approximation. Hence, it cannot handle strong
ute—solvent interaction3$2”quantum tunneling process®&s30 system-bath couplings and memory effects.
and fast chemical exchange in molecular compléke¥s. As was shown by Tanimura et al., such systems can be treated

Multidimensional vibrational spectroscopy is the optical by utilizing a tridiagonal hierarchy of equatioffs>° For a low-
counterpart of multidimensional NMR such as COSY and teémperature case, the structure of hierarchy becomes very
NOESY, which are powerful tools for organic structural analysis complicated because of the quantum nature of the heat bath
and structural biolog§* In 2D-NMR and 2D-IR experiments, ~ Characterized by Matsubara frequencie3hen, Ishizaki and
the data sets are represented in the 2D frequency space. Thdanimura clarified the structure of hierarchy and found a
2D frequency space allows us to separate the dynamic contribu-figorous and simple way to terminate the hierarchy, reducing
tions from various Liouville pathways. We can, therefore, the quantum FokkerPlanck equation with low-temperature
identify coupled modes visually from the off-diagonal pe#k4? correction terms (QFP-LTCY. Along the line of hierarchy
Furthermore, because the 2D line shapes are very sensitive tdormalism, different formulations have been testéd? but

practical problems demonstrated so far, such as vibrational

T Part of the “Sheng Hsien Lin Festschrift". dephasing problems of 2D-IR spectroscopy, were only from the

* Corresponding author. E-mail address: ishizaki@kuchem.kyoto-u.ac.jp. QFP-LTC approach! Here, we extend previous analysis of a
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single-mode system to multimode systems coupled to multiple where the parametets,, 7., andwg; are the mass-weighted
baths by further extending the QFP-LTC formalism. Special coordinate, conjugate momentum, and frequency of jthe
attention will be paid to explore the correlation of fluctuation  oscillator in theath bath, respectively. In eq 2.4, the interaction
dissipation processes among different modes by means of thebetween the multimode system and tih bath is expressed
2D-IR spectroscopy. This work is motivated by the experiment as H%(q, {£y}) = —Wu(0) 5j Coj&ajr Where W,(q) is a
performed by Demirdeen, Khalil, and Tokmakoff:*® They function whose dimension is the samecg&Ve have included
reported on the 2D-IR experiment of the correlation effects in the counter tern\Uq(q) = We(q)? chij/zwij to maintain the
the solvation dynamics of coupled vibrational modes. As a translational symmetry of the Hamiltonian foi(g) = 0.4°

model system to probe the correlated dynamics, they studied The key quantity of interest is the reduced density operator,
the coupled symmetric and asymmetric carbonyC{=O ] B(t) = Troand po(t)}, that is, the partial trace of the total density
stretching modes of dicarbonyl acetylacetonato rhodium(l) [ Rh- operator over the optically inactive bath degrees of freedom
(COXCsH70O;] dissolved in chloroform. Their analyses were (g i} . Here, we suppose that the total system at the initial
based on a quasi-static energy-level model assuming a completgime t = t; is in the uncorrelated product statef the form

separation of thg extremely fast .(h.omogeneous limit) and prot) O pt) Ma exp(—ﬁaﬂﬁ,ﬁ,). Then, the reduced density
extremely slow (inhomogeneous limit) components. In this operator evolves in times as follows

paper, we employ more general model expressed in molecular

coordinates and apply rigorous dynamical theory for arbitrary pt) = f&’(t; t)p(t) (2.5)

time-scale components of the system and baths. Although 2D-

IR experiments are carried out at room temperature, we needwhere the matrix element of the Liouville space propagator

to include the low-temperature correction terms. This is because,t; t;) can be expressed in the path integral form as

in the intramolecular vibrational motion under discussion, the

temperature is much lower than the vibrational excitation energy, Ja.q9,t 9,9, 4) =

where quantum effects play a dominant role. @b @d ., jsea/h
This paper is organized as follows: In Section 2, we introduce ,/Eq,,t,) “q (@) e

the quantum dissipative equation, which can describe the

dynamics of the multimode system coupled to multiple heat Here, Sefq] is the action corresponding to the renormalized

baths. In Section 3, numerical results for nonlinear optical gystem HamiltonianH f = H + T,AU4(q), and 7a[q, q] is

signals including 2D-IR spectra are presented and discussedihe FeynmanVernon influence function&! for the ath bath

Section 4 is devoted to concluding remarks. whose character is specified by the spectral density) =

nzj[cij 2w6]0(w — wg). In this paper, we take an Ohmic

spectral density with the LorentDrude regularization:

[17la. q’]] e S (2.6)

o

2. Multimode System Coupled to Multiple Baths:
Reduced Equation of Motion

We consider a multimode system described by dimensionless he, v
coordinatesq = (qu, G, . . .), and their conjugate momenta, (@) =~ — 2 (2.7)
= (p1, P2, - - .). The Hamiltonian is given by ¢ @ TV
Ao The parameteryg, and ¢, are related to the correlation time
b= o Sa2 + U@ 2.1) and the strength of noise by theh bath, respectively. This
Z 2 Ps g ' can be seen from the symmetrized correlation function of the
ath bath collective coordinat¥,(t) = Y Caj Xoi(t):
whereU(q) is the molecular potential for the vibrational motion 1 3
and is separated into harmonic parts and an anharmonic part as —[{])A(ﬂ(t), )A(a(o)} O ¢ yue‘ya‘ + A1) (2.8)
follows: 2 Ba
Aw with
S
U=y —g¢+U 2.2
(Q) Z 2 qs anh(q) ( ) Ca o Zyi o -
Aa(t) =—— Zﬁ(yae Vot — Vo€ iy (2.9)
For the potential, we define the characteristic frequencyas Bu i Yok ~ Va
= max(ws).

To model an intramolecular vibrational motion in a condensed Where{ , } stands for the anticommutator, andl-(8 is the

phase, we consider the system coupled to multiple heat bathshermal average with respect to the bath degrees of freedom.
each of which consists of harmonic oscillators. The total Eduation 2.9 involving the bosonic Matsubara frequengy
Hamiltonian is expressed as = 2nkifh (k = 1) represents a quantum effect of tih bath

noise. In the high-temperature regighhy./2 < 1, the
contribution of A4(t) to eq 2.8 becomes vanishingly small.
Therefore, eq 2.8 indicates that the bath oscillators disturb the
system with the colored noise, which has an exponential time
correlation. However, just because the contribution of eq 2.9 is
vanishingly small does not mean that we can disregard it. The
disregard of this term at low temperatures characterized by

Bohwd2 = 1 destroys the quantum interference between the
~ (o) o) o Do, Coj . system and the bath and then gives rise to such an unphysical
Hpatn T Hint = z B + Py Soj — W, (O (2.4) result asthe positiity problem where the populations of the

]

|:|t0t= H+ z [Hggth"' |:||(r?t)] (2.3)
o

Here, the bath and systerbath interaction Hamiltonians are
expressed as

A2 2 2

2
Wy excited states become negative. For the wholesome description
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of quantum dissipative dynamics, it is indispensable to construct which is valid for the integerg.o, jo1, .-
the equations involving the effects of eq 2.9. In a similar manner
described in refs 52 and 57, we can construct the hierarchy of
equations for a system coupled to multiple heat baths. Here,
we can obtain the dynamic equation for the reduced density

operator eq 2.5 as follows:
—p(J )=—1i7p;t) — Z [Ziakvw 2| A 1)

-y Z)@ap(JaH, D~

where we introduce the set of hierarchy elemehis {j3, j2, .

..} with the K, + 1-dimensional vector foath bath defined
by Ky + 1 non-negative integer§s = (joo, jat, --» jakg)- We

definedvqo = v, and introduced the notatiobhyy: = {j1, ...,

Jokets - With Jake = (a0, - jak £ 1, ooohjary)- The value oK

is determined so as to satigty

ZO Jakvak®akp(‘-]akfv t) (2 . 10)
=

Vo > 0 (2.11)

Note that onlyp(J = 0O; t) = p(t) describes the dynamics to be
measured, whereas the other elemep(ts = 0; t) are the

auxiliary operators being introduced in order to take into account
a correlation between the system and the bath as the memory

effect and the quantum interference. In eq 2i10°%" = (i/n)
x[H + Yo AUq(@)]* is the quantal Liouvillian of the system,
where the counter termAUy(§) is expressed as

Caya

AU(@) = h % W (@

(2.12)

d,, O and=, are theath bath-induced relaxation operators
defined by and

= IW, (@) (2.13a)
O, S — iz, W,(8)°]
ﬁh oL aq
(2.13b)
6,=i S iwa(q)x (k= 1) (2.13c)

=1
ok 2
ﬁuhwc JT

-7

[I])

(1 7, COtZ,)[W,(@)"]?
(2.13d)

- ;‘ q)a®ak +

with z, = B.hy./2. In the above, we have introduced the hyper-
operator notations
oot=0t+10

>t=0t-10, (2.14)

for any operatorfﬂ and operand operatér

The multidimensional hierarchy equations, eq 2.10, continue

to infinity, which is not easy to solve numerically. To terminate
eq 2.10 at the finite stages, we introduce the following
terminatop?57

;1) (2.15)

a, o~ effa A
SO0 =i Y -y Egp

o
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, jox satisfying

Ke w,
N= Y o
k= maX()/(x' 1/otl)

In practice, as demonstrated in ref 52, we may use the lower
values ofK, and Ny, which do not satisfy eqs 2.11 and 2.16,
respectively. Equation 2.10 with eq 2.15 has applicability to a
low-temperature system strongly coupled to the heat bath
without employing the rotating-wave approximation for the
system-bath interaction; eq 2.10 with eq 2.15 is free from the
positivity problem. This advantage deserves explicit emphasis.

(2.16)

3. Dynamics of the Multimode System Probed by 2D-IR
Spectra

In this section, we present the vibrational spectra calculated
for an optically active two-mode system

. ho; , ho, L
H= > P prt—- 2 pz +U(ay, 6y (3.1)
under various systefrbath interactions. Here, we consider the
nonlinearly coupled Morse oscillators system whose potential

is given by

2 Y2, G2,
U(ay, ap) = Z Us(g) + A 5 010, + > 00> (3.2)
=

where

Us(a) = (3.3)

hw
—1 — exp(- a,q))?
28;

We describe the system in terms of the energy eigenstates of
each vibrational mode in the casedif, = gi122= 0, {|v1, 20

= {|10® |20, where|vis the eigenstate belonging to the
vth eigenvaluegs, of the sth mode. The two-mode system is
specified by the parameters

w, = 1565.65 cm’, w,=1666.66 cm* (3.4)
a,=a,=0.1 (3.5)
G112= 01, = —40cm* (3.6)

andwe = max@i, wz) = w1. In addition, we assume the dipole

moment to be the following form

p(@) = ua0y + 1,0 (3.7)
and we sel; = u» = 1 to calculate the optical signals.

We begin with the two-mode system coupled to a single heat
bath: the case of onlyt = 1. For simplicity of the later
discussion, the systenbath mteraction—ilm(q{élj}) ineq24
is assumed to be of the form

2 Var 2
q1+7q2 chjglj (3.8)

Vi
W(a) z Cyy&y = 7
]

This interaction induces not only the dissipation but also the
curvature fluctuation of the potential surfadé(g;, @z) in

accordance with the time evolution of the bath coordinates
{ &4} 454 Furthermore, we consider the two sets of the value
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4 To obtain signals, we numerically integrate eq 2.10 with eq
2.15 by using the fourth-order Rung&utta method. The time
step for the finite difference expression feg(J, t)/ot is ot =
(L/we) x 0.01. The system is represented by the lowest four
energy eigenstates of the respective vibrational modes in order
to carry out the calculations. We choose the hierarchy and the
number of the Matsubara frequencidg = 7—15 andK, =

1—4, respectively. As was mentioned in Section 1, by the virtue
of the low-temperature correction terms, the present equations
of motion maintain the positivity property, where most of the
reduced equation of motion could not be certified. The accuracy
of the numerical calculations is checked by changing the number
of the energy eigenstates and the valuestofN,, andK,.

For resonant third-order nonlinear spectroscopic experiments,
we apply the three short pulses, tuned to the molecular vibration
of interest, with wave vectork,, k,, andk; at timet = tj, ty,
andtc, respectively. These pulses generate the four-wave-mixing
signal field in the phase-matched directions. In this paper, we
consider the signals generated in the phase-matched direction
ks = k¢ + kp — ka. The signal detected at tintés described by
? a nonlinear response function, which depends on three time
! ! ! ! ! ! intervals referred to as the evolution periqdthe waiting period
Figure 1. Schematic illustration of correlated fluctuations of the 72 and the detection periogs. For a time orderingd, >ts >ty
potential energy surface of the two-mode system. The top panel shows({a, 3, y} = {a, b, c}), the three intervals are defined by=
the contour Iine§ of the unperturbed surface as the function of two tg—ta, T2=1, — 13, andriz=t — t,. By varying the ordering
molecular coordinates. In panel a, the red lines represent the perturbedyf the three input pulses, we can detect the signals corresponding

contour lines by the- correlated fluctuation. In panel b, the blue lines . . . . . .
represent the contour lines modulated by theorrelated fluctuation. to various Liouville pathways in thés direction. In what

In a and b, the black dashed lines are the unperturbed contours, and0llows, the response function for an ordering=ts >t, is
the arrows denote that the potential energy surface fluctuates arounddenoted byR, (3, 72, 71). Then, we ha®
the unperturbed state. Thie correlated and- correlated fluctuations

deform the potential surface in distinct manners.

P Rep dTar T2y T1) =
for Vss (@) Vi1, V22) = (+1, +1) and (b) V11, V22) = (+1, Tr{ &) 6(r) L G(r)Lix 6z lAi”eq} 3.10a
—1). As we show in the schematic illustration in Figure 1, the #(Q) Glrg) g~ Glralgit= CT)pi—piog ( )

bath modulates the system in distinct manner. In case (a), the .
bath modulates the curvature along theaxis and that along ReadTs 72 T1) = . ) ]
the g axis in the same direction, whereas in case (b), the bath A A Tasa, lax A 1. aeq
modulates the curvatures along two axes in opposite directions. Tr{# @ Gy R G(Tz)hﬂ - G(Tl)h/’t —P ‘Ot} (3.10b)
We call the fluctuations in (a) and (H) correlated fluctuation
and— correlated fluctuationrespectively. For both (a) and (b), and
the systemr-bath coupling parameters are set to/he= 0.004v
and&; = 0.4w.. The temperature of the heat bathTis= 300 Ry Ta T 77) =
K. From these parameters, the amplitude of the frequency acbt"3 "2 "1 ) ) )
fluctuation in thesth mode 6 = 1, 2) can be estimated At = { ) G Lnx Ele )t B ) Aeq} _
0.0075v.. (See eq 3.18 in ref 57.) Then, we havgly; = 1.87. Tru(@ G(ry) gt Glrpi=. Clrpft=-pay (3.100)
This value is in the so-called spectral diffusion regime with
moderate inhomogeneity. Note that the extreme cases;, whereG(z) is the retarded propagator of the total system in the
< 1 andAs/y1 > 1 are called the homogeneous and inhomo- Liouville space. The operatgr-.. is defined by
geneous limit, respectively.

As the third case (c), we consider the two-mode system where
thesth mode 6§ =1, 2) is coupled to theth heat bath. Theth
system-bath interaction is assumed to be in the form

d_=>Slv+ 1,000+ 1, ' u@)e, o002, | (3.11)

v

V. for the dipole moment of the system{q), and the operatqgi—
SS . o . . .
W, CE =—@S c.E. 3.9 is the Hermitian conjugate gi-.. Note that the directions of
@ ,z SJES' 2 % ,z SJES' (39) the subscript arrows in eq 3.10 correspond to those of the arrows
in double-sided Feynman diagrams. The response functions, eqs

Because the baths do not interact with each other, the fluctua-3.10a and 3.10b, describe the rephasing and nonrephasing
tions along the two axes in the potential surface do not correlate. €xperiments, respectively. When= 0, however, the last two
Therefore, we call this casgncorrelated fluctuationFor this pulses are coincident in the matter. Then, the two response
case, the systerrbath parameters are set to pe = y, = functions stemming from the different time orderinBs; s and
0.004v; and &1 = &> = 0.4wc. The temperatures of the two  Ruca (= Rebd, are indistinguishable for the rephasing experi-
baths are assumed to be the same as that in the single bath casment. By the same token, both of the two response functions,
T = 300 K. Reap @nd Rac b, coOntribute to the nonrephasing signal when
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= 0. Therefore, we redefine the rephasing and nonrephasing
response functions as

Re(73, T2 7p) = H(7p) RT3, 72, 7)) +
H(_TZ) Rbc,a(TS' Ty 7:1) (3.12)

and

Rur(Tar 7o T1) = H(75) Regp(73 720 7p) +
H(=72) Rycp(ts —72 1) (3.13)

respectively, wherél(t) is the Heaviside step function.

Here, we describe the way to calculate the optical response
function, eq 3.10a, from the equation of motion appro®én.
At the setout, we have to generate the true equilibrium state of
the reduced density matrix. The equilibrium state should include
the correlation effect between the system and the bath, which
arises from the systerbath interaction. To have the correlated
equilibrium state, we temporally set an initial conditig) =
0, t) = exp(—AH)/Tr exp(—BH) andp(d = 0, t;) = 0. It should
be noted that this temporal initial condition is not the true
equilibrium state because it neglects the correlation effect. We
can generate the initial equilibrium state by integrating the
equation of motion, eqgs 2.10 and 2.15, with the temporal
condition, until all hierarchical elements attain steady-state
values. (See also Appendix A of ref 29.) This time instant is
set to bet = 0. If we utilize the theories suffering from the
positivity problem mentioned in Section 2, then we cannot obtain
the physically meaningful correlated equilibrium state and hence
cannot carry forward the calculations anymore. To ignore this
fact is to miss the significance of the poaiily property.Next,
the generated equilibrium state is modified by the first laser
pulse via the dipole operator @#i)i". This perturbed density
operator is propagated for the period by the operatds(z),
where the time evolution follows the equation of motion, egs
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Figure 2. Comparison of the 1D spectra: (&)correlated fluctuation,

(b) — correlated fluctuation, and (c) uncorrelated fluctuation. The left
panels show the linear absorption spectra, whereas the right panels the
1D plot of the rephasing spectra, eq 3.17. In the rephasing spectra, the
negative-going peaks arise from the-D transition, whereas the
positive-going peaks arise from the-2 transition.

Figure 2 presents linear absorption spectra (left panels) and
1D plots of the rephasing spectra (right panels) defined by

§9(Qy) =1Im [ drse ¥ Ry(r5,7,= 0,7, = 0) (3.17)

Panels (a), (b), and (c) are for thecorrelated,— correlated,

and uncorrelated cases, respectively. The 1D spectra for each
case have fairly similar characteristics. In the rephasing spectra,
the negative-going peaks arise from thelOtransition, whereas

the positive-going peaks arise from theZ transition. However,

2.10 and 2.15. The subsequent events can be interpretecbne cannot extract any further information from the 1D spectra;

correspondingly. Finally, the expectation value of the dipole
momentu(§) is calculated with the density operator perturbed

it is impossible to distinguish the different mechanisms of the
potential surface fluctuation.

by three laser pulses. Equations 3.10b and 3.10c can be The 2D-IR rephasing, nonrephasing, and correlation spectra

calculated in the same way.

By the double Fourier transform of eqs 3.12 and 3.13 with
respect tor; and s, we can obtain a 2D rephasing spectrum

S(Qy Qi) =1Im [ dry [ dr, NN R(Ty, 7, 7))
(3.14)

and a 2D nonrephasing spectrum

SWr(R3, Qg5 7)) =1m fom dry ﬁ)w dr, @ NN R (75, 75, 7))
(3.15)

respectively. The individual 2D rephasing and nonrephasing
spectra show distorted line shapes (the so-calleake-twisted

with t, = 0 are given in Figure 3. Panels (a) and (b) are for the
+ correlated and- correlated fluctuation cases, respectively.
In spectra (a-iii), the off-diagonal peaks are titled parallel to
the diagonal peaks. By comparing the rephasing spectrum (a-i)
with the nonrephasing one (a-ii), we can see the peaks arise
mainly from the rephasing pathways. In spectra (b-iii), in
contrast, the off-diagonal peaks are titled perpendicular to the
diagonal peaks. The peaks come mainly from the nonrephasing
pathways. The difference between the off-diagonal peak am-
plitudes in panel (a-i) and those in panel (b-ii) are due to the
imbalance contributions among the number of the Liouville
pathways for the rephasing and nonrephasing processes. (See
Figure 4.) These results are similar to the results by Khalil,
Demirdoven, and Tokmakoff. Their analysis was based on a
quasi-static energy-level model employing the complete separa-

lines) because the double Fourier transform leads to a combina-tion of the extremely fast (homogeneous limityy; < 1) and

tion of absorptive and dispersive featufé®y adding the 2D

extremely slow (inhomogeneous limit¢/y; > 1) components

rephasing and nonrephasing spectra in equal weights, howeverfor the systembath interactions. However, we employed a

we can cancel out the contribution from the dispersive part to
obtain the 2D correlation spectrum with only the absorptive line
shape®

(€25, Q45 7)) = KR(QLy, — Q7)) + Sr(QR3 Q5 7))
(3.16)

more-general model described by molecular vibrational coor-
dinates and apply the dynamical theory for the spectral diffusion
regime with the moderate inhomogeneityy/y; = 1.87. Thus,

the degree of elongation of the 2D lineshapes in Figure 3 along
the diagonal axis is less than that in Figure 15 in ref 6. Panel
(c) is for the uncorrelated case. In this case, the fluctuations of
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(c-i) Rephasing
AN A T I

(c-ii) Nonrephasing (c-iii) Correlation

] * I
ot e £ 1 :
) — Qt) - L
o S =
£ - ; 4t
3 4L 4
o« o 7
: S ]
~1650 1550 1650 1650
Q, (em™) Q, (ecm™) Q, (em™)
-0.5 0 +0.5

Figure 3. Comparison of 2D-IR spectra: (&) correlated fluctuation, (b)- correlated fluctuation, and (c) uncorrelated fluctuation. The panels

from the left to right show (i) the rephasing spectra, eq 3.14; (ii) the nonrephasing spectra, eq 3.15; and (iii) the correlation spectra, eq 3.16,

respectively. The normalization of 2D plots is such that the peak amplitud®;a€)s) = (1550, 1550) cm! in spectrum a-iii is unity. Twenty
equally spaced contour levels fror0.5 to 0.5 are drawn for each plot.

frequenciesv; and w, are independent. Therefore, the ampli-

the multimode systems, which utilized the Redfield equation

tudes of the off-diagonal peaks in the rephasing spectrum (c-i) and the stochastic theories, started from the energy-level
is suppressed relative to those in spectrum (a-i) and is enhancedepresentation. In contrast, our formalism is based on a

relative to those in (b-i). By the same token, the off-diagonal

molecular coordinate representation although we used energy

amplitudes in the nonrephasing spectra (c-ii) are weaker thaneigenstates to carry out numerical calculations. By means of

those in (b-ii) and is stronger than those in (a-i). However,
because the number of the Liouville pathways contributing to
the spectrum (c-i) is more than that for (c-ii); the gradient of
the off-diagonal peaks in the correlation spectrum (c-iii) is
slightly upward. Thus, it is difficult to distinguish clearly the

difference between thé correlation and the uncorrelation from

only the gradients of the off-diagonal peaks in the correlation

the present formalism, 1D- and 2D-IR spectra for the two-mode
systems were calculated for various conditions. We showed that,
in contrast to the 1D spectra, the 2D spectra were very sensitive
to the distinct manners of the potential surface modulation. We
discussed correlation effects of modulation between the two
modes. For this purpose, we consider two cases of system
bath couplings. One is a correlated case in which two modes

spectra. We need to analyze the amplitudes of the peaks in thegre coupled to a single bath, and the other is an uncorrelated

rephasing and nonrephasing spectra.

4. Concluding Remarks

In this paper, we extended the quantum Fokkelanck

case in which each mode is coupled to a respective baths. We
further classify the correlated case into two cases,tker-
relation and— correlation cases. In thé correlation case, the
bath modulates the curvatures of the two modes in the same

equation with low-temperature correction terms to the multimode direction. Alternatively, in the— correlation case, the bath
system coupled to the multiple heat baths. Previous studies onmodulates the curvatures in opposite directions. No information
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Figure 4. Double-sided Feynman diagrams representing the Liouville
pathways, which cause the off-diagonal peaks in the lower right of the
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